DEPARTMENT OF TRANSPORTATION DES-OE MS #43 1727 30TH Street, 2ND Floor Sacramento, CA 95816 ## ** WARNING ** WARNING ** WARNING ** This document is intended for informational purposes only. Users are cautioned that California Department of Transportation (Department) does not assume any liability or responsibility based on these electronic files or for any defective or incomplete copying, exerpting, scanning, faxing or downloading of the contract documents. As always, for the official paper versions of the bidders packages and non-bidder packages, including addenda write to the California Department of Transportation, Plans and Bid Documents, Room 0200, P.O. Box 942874, Sacramento, CA 94272-0001, telephone (916) 654-4490 or fax (916) 654-7028. Office hours are 7:30 a.m. to 4:15 p.m. When ordering bidder or non-bidder packages it is important that you include a telephone number and fax number, P.O. Box and street address so that you can receive addenda. July 22, 2002 12-Ora-73-VAR 12-0C9414 ACNH-P073(060)E Addendum No. 2 #### Dear Contractor: This addendum is being issued to the contract for construction on State highway in ORANGE COUNTY AT VARIOUS LOCATIONS FROM 0.2 KM WEST OF WILDLIFE UNDERCROSSING NO. 1 TO 0.7 KM WEST OF BISON AVENUE OVERCROSSING. Submit bids for this work with the understanding and full consideration of this addendum. The revisions declared in this addendum are an essential part of the contract. Bids for this work will be opened on August 1, 2002. This addendum is being issued to revise the Project Plans, the Notice to Contractors and Special Provisions, the Proposal and Contract, and provide Material Information Handout. Project Plan Sheets 1 and 31 are revised. Half-sized copies of the revised sheets are attached for substitution for the like-numbered sheets. Project Plan Sheets 101A, 101B, 101C, 107A, 107B, and 107C are added. Half-sized copies of the added sheets are attached for addition to the project plans. In the Special Provisions, the "Standard Plans List" is revised as attached. In the "Notice to Contractors and Special Provisions," the seventh paragraph is revised as follows: "At the time this contract is awarded, the Contractor shall possess either a Class A license or any combination of the following Class C licenses which constitutes a majority of the work: C-8, C-10, C-12, C-42." Addendum No. 2 Page 2 July 22, 2002 12-Ora-73-VAR 12-0C9414 ACNH-P073(060)E In the Special Provisions, Section 5-1.13, "PAYMENTS," is revised as follows: #### **"5-1.13 PAYMENTS** Attention is directed to Sections 9-1.06, "Partial Payments," and 9-1.07, "Payment After Acceptance," of the Standard Specifications and these special provisions. For the purpose of making partial payments pursuant to Section 9-1.06, "Partial Payments," of the Standard Specifications, the amount set forth for the contract items of work hereinafter listed shall be deemed to be the maximum value of the contract item of work which will be recognized for progress payment purposes: A. Clearing and Grubbing \$25,000 After acceptance of the contract pursuant to the provisions in Section 7-1.17, "Acceptance of Contract," of the Standard Specifications, the amount, if any, payable for a contract item of work in excess of the maximum value for progress payment purposes hereinabove listed for the item, will be included for payment in the first estimate made after acceptance of the contract. In determining the partial payments to be made to the Contractor, only the following listed materials will be considered for inclusion in the payment furnished but not incorporated in the work: - A. Luminaries - B. Lighting standards" In the Special Provisions, Section 10-1.30, "PILING," and Section 10-1.31, "STEEL STRUCTURES," are added as attached. In the Special Provisions, Section 10-3, "SIGNALS, LIGHTING AND ELECTRICAL SYSTEMS," is added as attached. In the Proposal and Contract, the Engineer's Estimate Items 54, 55 and 56 are added and Item 53 is deleted as attached. To Proposal and Contract book holders: Replace page 5 of the Engineer's Estimate in the Proposal with the attached revised page 5 of the Engineer's Estimate. The revised Engineer's Estimate is to be used in the bid. Attached is a copy of the Material Information, "Addendum 1 to Geotechnical Investigation of Phase 1 (Northern) Toll Road 73 Detention Basins: Supplementary Geotechnical Information for Lighting Standards and Other Minor Appurtenances." Indicate receipt of this addendum by filling in the number of this addendum in the space provided on the signature page of the proposal. Submit bids in the Proposal and Contract book you now possess. Holders who have already mailed their book will be contacted to arrange for the return of their book. Inform subcontractors and suppliers as necessary. Addendum No. 2 Page 3 July 22, 2002 12-Ora-73-VAR 12-0C9414 ACNH-P073(060)E This office is sending this addendum by UPS overnight mail to Proposal and Contract book holders to ensure that each receives it. If you are not a Proposal and Contract book holder, but request a book to bid on this project, you must comply with the requirements of this letter before submitting your bid. Sincerely, ORIGINAL SIGNED BY REBECCA D. HARNAGEL, Chief Office of Plans, Specifications & Estimates Office Engineer Attachments ### STANDARD PLANS LIST The Standard Plan sheets applicable to this contract include, but are not limited to those indicated below. The Revised Standard Plans (RSP) and New Standard Plans (NSP) which apply to this contract are included as individual sheets of the project plans. #### **Standard Plans List** The Standard Plan sheets applicable to this contract include, but are not limited to those indicated below. Applicable Revised Standard Plans (RSP) and New Standard Plans (NSP) indicated below are included in the project plans as individual Standard Plan sheets. | | GENERAL ROAD WORK (Miscellaneous) | |-------------|---| | A10A | Abbreviations | | A10B | Symbols | | A62A | Excavation and Backfill - Miscellaneous Details | | A62B | Limits of Payment for Excavation and Backfill - Bridge Surcharge and Wall | | A62D | Excavation and Backfill - Concrete Pipe Culverts | | RSP A62DA | Excavation and Backfill - Concrete Pipe Culverts | | A62E | Excavation and Backfill - Cast-In-Place Reinforced Concrete Box and Arch Culverts | | A62F | Excavation and Backfill - Metal and Plastic Culverts | | A77A | Metal Beam Guard Railing – Typical Wood Post With Wood Block | | A77B | Metal Beam Guard Railing - Standard Hardware | | A77C | Metal Beam Guard Railing – Wood Post and Wood Block Details | | A77D | Metal Beam Guard Railing – Typical Layouts | | A77E | Metal Beam Guard Railing – Typical Layouts | | A77F | Metal Beam Guard Railing – Typical Embankment Widening for End
Treatments | | RSP A77G | Metal Beam Guard Railing – End Treatment, Terminal Anchor Assembly (Type SFT) | | A77H | Metal Beam Guard Railing - Anchor Cable and Anchor Plate Details | | RSP A77M | Metal Beam Guard Railing and Single Faced Barrier Railing Terminal System - End Treatment | | A85 | Chain Link Fence | | D73 | Drainage Inlets | | D74C | Drainage Inlet Details | | D77A | Grate Details | | D79 | Precast Reinforced Concrete Pipe - Direct Design Method | **D88 Construction Loads On Culverts D94A Metal and Plastic Flared End Sections D94B Concrete Flared End Sections D97C** Corrugated Metal Pipe Coupling Details No. 3 - Helical and Universal **Couplers D97D** Corrugated Metal Pipe Coupling Details No. 4 - Hugger Coupling Bands **D97E** Corrugated Metal Pipe Coupling Details No. 5 - Standard Joint **D97F** Corrugated Metal Pipe Coupling Details No. 6 - Positive Joint **D97G** Corrugated Metal Pipe Coupling Details No. 7 - Positive Joints and **Downdrains D97H** Reinforced Concrete Pipe or Non-Reinforced Concrete Pipe - Standard and Positive Joints T₁A **Temporary Crash Cushion, Sand Filled (Unidirectional)** T₁B Temporary Crash Cushion, Sand Filled (Bidirectional) RSP T2 **Temporary Crash Cushion, Sand Filled (Shoulder Installations) Temporary Railing (Type K) T3 T4 Temporary Traffic Screen T5 Temporary Terminal Section (Type K) T7 Construction Project Funding Identification Signs** T10 Traffic Control System for Lane Closure On Freeways and Expressways Retaining Wall Type 1 - H=1200 Through 9100 mm **RSP B3-1 RSP B3-3 Retaining Wall Type 1A** RS₁ Roadside Signs, Typical Installation Details No. 1 RS₂ Roadside Signs - Wood Post, Typical Installation Details No. 2 RS4 Roadside Signs, Typical Installation Details No. 4 ES-1A Signal, Lighting and Electrical Systems - Symbols and Abbreviations ES-1B Signal, Lighting and Electrical Systems - Symbols and Abbreviations RSP ES-6A Lighting Standards - Types 15, 21 and 22 RSP ES-6B Lighting Standards - Types 15 AND 21, Barrier Rail Mounted Details ES-6E **Lighting Standards - Types 30 and 31** RSP ES-6F **Lighting Standards - Type 30 and 31 Base Plate Details** ES-7M Signal and Lighting Standards - Details No. 1 ES-7N Signal and Lighting Standards - Details No. 2 **ES-8** Signal, Lighting and Electrical Systems - Pull Box Details **ES-10** Signal, Lighting and Electrical Systems - Isolux Diagrams **ES-11** Signal, Lighting and Electrical Systems - Foundation Installations Signal, Lighting and Electrical Systems - Wiring Details and Fuse Ratings Signal, Lighting and Electrical Systems - Splicing Details **ES-13A** **ES-13B** #### 10-1.30 PILING #### **GENERAL** Piling shall conform to the provisions in Section 49, "Piling," of the Standard Specifications, and these special provisions. Unless otherwise specified, welding of any work performed in conformance with the provisions in Section 49, "Piling," of the Standard Specifications, shall be in conformance with the requirements in AWS D1.1. Attention is directed to "Welding" of these special provisions. At the option of the Contractor,
vibratory hammers or oscillators may be used to install piles or permanent casings. #### CAST-IN-DRILLED-HOLE CONCRETE PILES Cast-in-drilled-hole concrete piling shall conform to the provisions in Section 49-4, "Cast-In-Place Concrete Piles," of the Standard Specifications and these special provisions. The provisions of "Welding" of these special provisions shall not apply to temporary steel casings. Cast-in-drilled-hole concrete piles 600 mm in diameter or larger may be constructed by excavation and depositing concrete under slurry. #### Materials Concrete deposited under slurry shall have a nominal penetration equal to or greater than 90 mm. Concrete shall be proportioned to prevent excessive bleed water and segregation. Concrete deposited under slurry shall contain not less than 400 kg of cementitious material per cubic meter. The combined aggregate grading used in concrete for cast-in-drilled-hole concrete piling shall be either the 25-mm maximum grading, the 12.5-mm maximum grading, or the 9.5-mm maximum grading and shall conform to the requirements in Section 90-3 "Aggregate Gradings," of the Standard Specifications. #### **Mineral Slurry** Mineral slurry shall be mixed and thoroughly hydrated in slurry tanks, and slurry shall be sampled from the slurry tanks and tested before placement in the drilled hole. Slurry shall be recirculated or continuously agitated in the drilled hole to maintain the specified properties. Recirculation shall include removal of drill cuttings from the slurry before discharging the slurry back into the drilled hole. When recirculation is used, the slurry shall be sampled and tested at least every 2 hours after beginning its use until tests show that the samples taken from the slurry tank and from near the bottom of the hole have consistent specified properties. Subsequently, slurry shall be sampled at least twice per shift as long as the specified properties remain consistent. Slurry that is not recirculated in the drilled hole shall be sampled and tested at least every 2 hours after beginning its use. The slurry shall be sampled midheight and near the bottom of the hole. Slurry shall be recirculated when tests show that the samples taken from midheight and near the bottom of the hole do not have consistent specified properties. Slurry shall also be sampled and tested prior to final cleaning of the bottom of the hole and again just prior to placing concrete. Samples shall be taken from midheight and near the bottom of the hole. Cleaning of the bottom of the hole and placement of the concrete shall not start until tests show that the samples taken from midheight and near the bottom of the hole have consistent specified properties. Mineral slurry shall be tested for conformance to the requirements shown in the following table: | MINERAL SLURRY | | | |--|---------------------------|--| | PROPERTY | REQUIREMENT | TEST | | Density (kg/m ³) - before placement | 1030* to 1110* | | | in the drilled hole - during drilling | | Mud Weight
(Density)
API 13B-1 | | - prior to final cleaning | 1030* to 1200* | Section 1 | | - immediately prior to placing concrete | | | | Viscosity
(seconds/liter) | | Marsh Funnel and Cup | | bentonite | 29 to 53 | API 13B-1
Section 2.2 | | attapulgite | 29 to 42 | 5 00 000 202 | | pH | 8 to 10.5 | Glass Electrode
pH Meter or pH
Paper | | Sand Content
(percent) | | Sand
API 13B-1 | | - prior to final cleaning | less than or equal to 4.0 | Section 5 | | - immediately prior to placing concrete | | | ^{*}When approved by the Engineer, slurry may be used in salt water, and the allowable densities may be increased up to 32 kg/m^3 . Any caked slurry on the sides or bottom of hole shall be removed before placing reinforcement. If concrete is not placed immediately after placing reinforcement, the reinforcement shall be removed and cleaned of slurry, the sides of the drilled hole cleaned of caked slurry, and the reinforcement again placed in the hole for concrete placement. Slurry temperature shall be at least 4 degrees Celsius when tested. #### **Synthetic Slurry** Synthetic slurries shall be used in conformance with the manufacturer's recommendations and these special provisions. The following synthetic slurries may be used: | PRODUCT | MANUFACTURER | |---------------|--------------------------------| | SlurryPro CDP | KB Technologies Ltd. | | - | Suite 216 | | | 735 Broad Street | | | Chattanooga, TN 37402 | | | (800) 525-5237 | | Super Mud | PDS Company | | | c/o Champion Equipment Company | | | 8140 East Rosecrans Ave. | | | Paramount, CA 90723 | | | (562) 634-8180 | | Shore Pac GCV | CETCO Drilling Products Group | | | 1350 West Shure Drive | | | Arlington Heights, IL 60004 | | | (847) 392-5800 | Inclusion of a synthetic slurry on the above list may be obtained by meeting the Department's requirements for synthetic slurries. The requirements can be obtained from the Office of Structure Design, P.O. Box 942874, Sacramento, CA 94274-0001. Synthetic slurries listed may not be appropriate for a given site. Synthetic slurries shall not be used in holes drilled in primarily soft or very soft cohesive soils as determined by the Engineer. A manufacturer's representative, as approved by the Engineer, shall provide technical assistance for the use of their product, shall be at the site prior to introduction of the synthetic slurry into a drilled hole, and shall remain at the site until released by the Engineer. Synthetic slurries shall be sampled and tested at both mid-height and near the bottom of the drilled hole. Samples shall be taken and tested during drilling as necessary to verify the control of the properties of the slurry. Samples shall be taken and tested when drilling is complete, but prior to final cleaning of the bottom of the hole. When samples are in conformance with the requirements shown in the following tables for each slurry product, the bottom of the hole shall be cleaned and any loose or settled material removed. Samples shall be obtained and tested after final cleaning with steel reinforcement in place and just prior to placing concrete. SlurryPro CDP synthetic slurries shall be tested for conformance to the requirements shown in the following table: | SLURRYPRO CDP
KB Technologies Ltd. | | | | |---|-----------------------------|---|--| | PROPERTY | REQUIREMENT | TEST | | | Density (kg/m ³) - during drilling | less than or equal to 1075* | Mud Weight
(Density)
API 13B-1
Section 1 | | | prior to final cleaningjust prior to placing concrete | less than or equal to 1025* | | | | Viscosity
(seconds/liter) | | Marsh Funnel | | | - during drilling | 53 to 127 | and Cup
API 13B-1
Section 2.2 | | | -prior to final cleaning- just prior to placing concrete | less than or equal to 74 | | | | рН | 6 to 11.5 | Glass Electrode
pH Meter or pH
Paper | | | Sand Content (percent) - prior to final cleaning - just prior to placing concrete | less than or equal to 0.5 | Sand
API 13B-1
Section 5 | | ^{*}When approved by the Engineer, slurry may be used in salt water, and the allowable densities may be increased up to 32 kg/m^3 . Slurry temperature shall be at least 4 degrees Celsius when tested. Super Mud synthetic slurries shall be tested for conformance to the requirements shown in the following table: | SUPER MUD
PDS Company | | | |---|------------------------------------|---| | PROPERTY | REQUIREMENT | TEST | | Density (kg/m ³) - prior to final cleaning - just prior to placing concrete | less than or equal to 1025* | Mud Weight
(Density)
API 13B-1
Section 1 | | Viscosity (seconds/liter) - during drilling - prior to final cleaning - just prior to | 34 to 64 less than or equal to 64 | Marsh Funnel and
Cup
API 13B-1
Section 2.2 | | placing concrete | 8 to 10.0 | Glass Electrode
pH Meter or pH
Paper | | Sand Content (percent) - prior to final cleaning -just prior to placing concrete | less than or equal to 0.5 | Sand
API 13B-1
Section 5 | ^{*}When approved by the Engineer, slurry may be used in salt water, and the allowable densities may be increased up to 32 ${\rm kg/m^3}$. Slurry temperature shall be at least 4 degrees Celsius when tested. Shore Pac GCV synthetic slurries shall be tested for conformance to the requirements shown in the following table: | Shore Pac GCV
CETCO Drilling Products Group | | | | |--|------------------------------------|---|--| | PROPERTY | REQUIREMENT | TEST | | | Density (kg/m ³) - prior to final cleaning - just prior to placing concrete | less than or equal to 1025* | Mud Weight
(Density)
API 13B-1
Section 1 | | | Viscosity (seconds/liter) - during drilling - prior to final cleaning - just prior to placing concrete | 35 to 78 less than or equal to 60 | Marsh Funnel and
Cup
API 13B-1
Section 2.2 | | | рН | 8.0 to 11.0 | Glass Electrode pH
Meter or pH Paper | | | Sand Content (percent) - prior to final cleaning -just prior to placing concrete | less than or equal to 0.5 | Sand
API 13B-1
Section 5 | | ^{*}When approved by the Engineer, slurry may be used in salt water, and the allowable densities may be increased up to 32 kg/m³. Slurry temperature shall be at least 4 degrees Celsius when tested. #### **Water Slurry** At the option of the Contractor water may be used as slurry when casing is used for the entire length of the drilled hole.
Water slurry shall be tested for conformance to the requirements shown in the following table: | WATER SLURRY | | | |--|---------------------------|---| | PROPERTY | REQUIREMENT | TEST | | Density (kg/m ³) - prior to final cleaning - just prior to placing concrete | 1017 * | Mud Weight
(Density)
API 13B-1
Section 1 | | Sand Content (percent) - prior to final cleaning -just prior to placing concrete | less than or equal to 0.5 | Sand
API 13B-1
Section 5 | ^{*}When approved by the Engineer, salt water slurry may be used, and the allowable densities may be increased up to 32 kg/m^3 . #### Construction The Contractor shall submit a placing plan to the Engineer for approval prior to producing the test batch for cast-indrilled-hole concrete piling and at least 10 working days prior to constructing piling. The plan shall include complete description, details, and supporting calculations as listed below: - A. Requirements for all cast-in-drilled hole concrete piling: - 1. Concrete mix design, certified test data, and trial batch reports. - 2. Drilling or coring methods and equipment. - 3. Proposed method for casing installation and removal when necessary. - 4. Plan view drawing of pile showing reinforcement and inspection pipes, if required. - 5. Methods for placing, positioning, and supporting bar reinforcement. - 6. Methods and equipment for accurately determining the depth of concrete and actual and theoretical volume placed, including effects on volume of concrete when any casings are withdrawn. - 7. Methods and equipment for verifying that the bottom of the drilled hole is clean prior to placing concrete. - 8. Methods and equipment for preventing upward movement of reinforcement, including the Contractor's means of detecting and measuring upward movement during concrete placement operations. #### B. Additional requirements when concrete is placed under slurry: - 1. Concrete batching, delivery, and placing systems including time schedules and capacities therefor. Time schedules shall include the time required for each concrete placing operation at each pile. - 2. Concrete placing rate calculations. When requested by the Engineer, calculations shall be based on the initial pump pressures or static head on the concrete and losses throughout the placing system, including anticipated head of slurry and concrete to be displaced. - 3. Suppliers test reports on the physical and chemical properties of the slurry and any proposed slurry chemical additives including Material Safety Data Sheet. - 4. Slurry testing equipment and procedures. - 5. Removal and disposal of excavation, slurry, and contaminated concrete, including methods and rates of removal. - 6. Slurry agitating, recirculating, and cleaning methods and equipment. In addition to compressive strength requirements, the consistency of the concrete to be deposited under slurry shall be verified before use by producing a batch to be tested. The test batch shall be produced and delivered to the project under conditions and in time periods similar to those expected during the placement of concrete in the piles. Concrete for the test batch shall be placed in an excavated hole or suitable container of adequate size to allow testing in conformance with California Test 533. Depositing of test batch concrete under slurry will not be required. For piles where the time required for each concrete placing operation, as submitted in the placing plan, will be 2 hours or less, the test batch shall demonstrate that the proposed concrete mix design achieves both the specified nominal penetration and a penetration of at least 50 mm after twice that time has elapsed. For piles where the time required for each concrete placing operation, as submitted in the placing plan, will be more than 2 hours, the test batch shall demonstrate that the proposed concrete mix design achieves both the specified nominal penetration and a penetration of at least 50 mm after that time plus 2 hours has elapsed. The time period shall begin at the start of placement. The concrete shall not be vibrated or agitated during the test period. Upon completion of testing, the concrete shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. Concrete deposited under slurry shall not be vibrated until all temporary casing is removed and concrete contaminated with soil, slurry, or other materials is removed. Concrete deposited under slurry shall be vibrated in the upper 2 m of the pile. The concrete deposited under slurry shall be carefully placed in a compact, monolithic mass and by a method that will prevent washing of the concrete. Placing concrete shall be a continuous operation lasting not more than the time required for each concrete placing operation at each pile, as submitted in the placing plan, unless otherwise approved in writing by the Engineer. The concrete shall be placed with concrete pumps and delivery tube system of adequate number and size to complete the placing of concrete in the time specified. The delivery tube system shall consist of one of the following: - A. A tremie tube or tubes, each of which are at least 250 mm in diameter, fed by one or more concrete pumps. - B. One or more concrete pump tubes, each fed by a single concrete pump. The delivery tube system shall consist of watertight tubes with sufficient rigidity to keep the ends always in the mass of concrete placed. If only one delivery tube is utilized to place the concrete, the tube shall be placed near the center of the drilled hole. Multiple tubes shall be uniformly spaced in the hole. Internal bracing for the steel reinforcing cage shall accommodate the delivery tube system. Tremies shall not be used for piles without space for a 250-mm tube. Spillage of concrete into the slurry during concrete placing operations shall not be allowed. Delivery tubes shall be capped with a water tight cap, or plugged above the slurry level with a good quality, tight fitting, moving plug that will expel the slurry from the tube as the tube is charged with concrete. The cap or plug shall be designed to be released as the tube is charged. The pump discharge or tremie tube shall extend to the bottom of the hole before charging the tube with concrete. After charging the delivery tube system with concrete, the flow of concrete through a tube shall be induced by slightly raising the discharge end. During concrete placement, the tip of the delivery tube shall be maintained to prevent reentry of the slurry into the tube. Until at least 3 m of concrete has been placed, the tip of the delivery tube shall be within 150 mm of the bottom of the drilled hole, and then the embedment of the tip shall be maintained at least 3 m below the top surface of the concrete. Rapid raising or lowering of the delivery tube shall not be permitted. If the seal is lost or the delivery tube becomes plugged and must be removed, the tube shall be withdrawn, the tube cleaned, the tip of the tube capped to prevent entrance of the slurry, and the operation restarted by pushing the capped tube 3 m into the concrete and then reinitiating the flow of concrete. When slurry is used, a fully operational standby concrete pump, adequate to complete the work in the time specified, shall be provided at the site during concrete placement. The slurry level shall be maintained within 300 mm of the top of the drilled hole. A log of concrete placement for each drilled hole shall be maintained by the Contractor when concrete is deposited under slurry. The log shall show the pile location, tip elevation, dates of excavation and concrete placement, total quantity of concrete deposited, length and tip elevation of any casing, and details of any hole stabilization method and materials used. The log shall include a 215 mm x 280 mm sized graph of the concrete placed versus depth of hole filled. The graph shall be plotted continuously throughout placing of concrete. The depth of drilled hole filled shall be plotted vertically with the pile tip oriented at the bottom and the quantity of concrete shall be plotted horizontally. Readings shall be made at least at each 1.5 m of pile depth, and the time of the reading shall be indicated. The graph shall be labeled with the pile location, tip elevation, cutoff elevation, and the dates of excavation and concrete placement. The log shall be delivered to the Engineer within one working day of completion of placing concrete in the pile. After placing reinforcement and prior to placing concrete in the drilled hole, if drill cuttings settle out of slurry, the bottom of the drilled hole shall be cleaned. The Contractor shall verify that the bottom of the drilled hole is clean. If temporary casing is used, concrete placed under slurry shall be maintained at a level at least 1.5 m above the bottom of the casing. The withdrawal of casings shall not cause contamination of the concrete with slurry. Material resulting from using slurry shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. #### **Acceptance Testing and Mitigation** Vertical inspection pipes for acceptance testing shall be provided in all cast-in-drilled-hole concrete piles that are 600 mm in diameter or larger, except when the holes are dry or when the holes are dewatered without the use of temporary casing to control the groundwater. Inspection pipes shall be Schedule 40 polyvinyl chloride pipe with a nominal inside diameter of 50 mm. Each inspection pipe shall be capped top and bottom and shall have watertight couplers to provide a clean, dry and unobstructed 50-mm diameter clear opening from 1.0 m above the pile cutoff down to the bottom
of the reinforcing cage. Inspection pipes shall be placed around the pile, inside the outermost spiral or hoop reinforcement, and 75 mm clear of the vertical reinforcement, at a uniform spacing not exceeding 840 mm measured along the circle passing through the centers of inspection pipes. A minimum of 2 inspection pipes per pile shall be used. When the vertical reinforcement is not bundled and each bar is not more than 26 mm in diameter, inspection pipes may be placed 50 mm clear of the vertical reinforcement. The inspection pipes shall be placed to provide the maximum diameter circle that passes through the centers of the inspection pipes while maintaining the clear spacing required herein. The pipes shall be installed in straight alignment, parallel to the main reinforcement, and securely fastened in place to prevent misalignment during installation of the reinforcement and placing of concrete in the hole. The Contractor shall log the location of the inspection pipe couplers with respect to the plane of pile cut off, and these logs shall be delivered to the Engineer upon completion of the placement of concrete in the drilled hole. After placing concrete and before requesting acceptance tests, each inspection pipe shall be tested by the Contractor in the presence of the Engineer by passing a 48.3-mm diameter rigid cylinder 610 mm long through the complete length of pipe. If the 48.3-mm diameter rigid cylinder fails to pass any of the inspection pipes, the Contractor shall attempt to pass a 32.0-mm diameter rigid cylinder 1.375 m long through the complete length of those pipes in the presence of the Engineer. If an inspection pipe fails to pass the 32.0-mm diameter cylinder, the Contractor shall immediately fill all inspection pipes in the pile with water. The Contractor shall replace each inspection pipe that does not pass the 32.0-mm diameter cylinder with a 50.8-mm diameter hole cored through the concrete for the entire length of the pile. Cored holes shall be located as close as possible to the inspection pipes they are replacing, no more than 150 mm inside the reinforcement, and coring shall not damage the pile reinforcement. Cored holes shall be made with a double wall core barrel system utilizing a split tube type inner barrel. Coring with a solid type inner barrel will not be allowed. Coring methods and equipment shall provide intact cores for the entire length of the pile concrete. The coring operation shall be logged by an Engineering Geologist or Civil Engineer licensed in the State of California and experienced in core logging. Coring logs shall include complete descriptions of inclusions and voids encountered during coring, and shall be delivered to the Engineer upon completion. Concrete cores shall be preserved, identified with the exact location the core was recovered from within the pile, and made available for inspection by the Engineer. Acceptance tests of the concrete will be made by the Engineer, without cost to the Contractor. Acceptance tests will evaluate the homogeneity of the placed concrete. Tests will include gamma-gamma logging. Tests may also include crosshole sonic logging and other means of inspection selected by the Engineer. The Contractor shall not conduct operations within 8.0 m of the gamma-gamma logging operations. The Contractor shall separate reinforcing steel as necessary to allow the Engineer access to the inspection pipes to perform gamma-gamma logging or other acceptance testing. After requesting acceptance tests and providing access to the piling, the Contractor shall allow 3 weeks for the Engineer to conduct these tests and make determination of acceptance if the 48.3-mm diameter cylinder passed all inspection pipes, and 4 weeks if only the 32.0-mm diameter cylinder passed all inspection pipes. Should the Engineer fail to complete these tests within the time allowance, and if in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of the delay in inspection, the delay will be considered a right of way delay as specified in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. All inspection pipes and cored holes in a pile shall be dewatered and filled with grout after notification by the Engineer that the pile is acceptable. Placement and removal of water in the inspection pipes shall be at the Contractors expense. Grout shall conform to the provisions in Section 50-1.09, "Bonding and Grouting," of the Standard Specifications. The inspection pipes and holes shall be filled using grout tubes that extend to the bottom of the pipe or hole or into the grout already placed. If acceptance testing performed by the Engineer determines that a pile does not meet the requirements of the specifications, then that pile will be rejected and all depositing of concrete under slurry or concrete placed using temporary casing for the purpose of controlling groundwater shall be suspended until written changes to the methods of pile construction are approved in writing by the Engineer. The Contractor shall submit to the Engineer for approval a mitigation plan for repair, supplementation, or replacement for each rejected cast-in-drilled-hole concrete pile, and this plan shall conform to the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. Prior to submitting this mitigation plan, the Engineer will hold a repair feasibility meeting with the Contractor to discuss the feasibility of repairing rejected piling. The Engineer will consider the size of the defect, the location of the defect, and the design information and corrosion protection considerations for the pile. This information will be made available to the Contractor, if appropriate, for the development of the mitigation plan. If the Engineer determines that it is not feasible to repair the rejected pile, the Contractor shall not include repair as a means of mitigation and shall proceed with the submittal of a mitigation plan for replacement or supplementation of the rejected pile. If the Engineer determines that a rejected pile does not require mitigation due to structural, geotechnical, or corrosion concerns, the Contractor may elect to 1) repair the pile per the approved mitigation plan, or 2) not repair anomalies found during acceptance testing of that pile. For such unrepaired piles, the Contractor shall pay to the State, \$400 per cubic meter for the portion of the pile affected by the anomalies. The volume, in cubic meters, of the portion of the pile affected by the anomalies, shall be calculated as the area of the cross-section of the pile affected by each anomaly, in square meters, as determined by the Engineer, multiplied by the distance, in meters, from the top of each anomaly to the specified tip of the pile. If the volume calculated for one anomaly overlaps the volume calculated for additional anomalies within the pile, the calculated volume for the overlap shall only be counted once. In no case shall the amount of the payment to the State for any such pile be less than \$400. The Department may deduct the amount from any moneys due, or that may become due the Contractor under the contract. Pile mitigation plans shall include the following: - A. The designation and location of the pile addressed by the mitigation plan. - B. A review of the structural, geotechnical, and corrosion design requirements of the rejected pile. - C. A step by step description of the mitigation work to be performed, including drawings if necessary. - D. An assessment of how the proposed mitigation work will address the structural, geotechnical, and corrosion design requirements of the rejected pile. - E. Methods for preservation or restoration of existing earthen materials. - F. A list of affected facilities, if any, with methods and equipment for protection of these facilities during mitigation. - G. The State assigned contract number, bridge number, full name of the structure as shown on the contract plans, District-County-Route-Kilometer Post, and the Contractor's (and Subcontractor's if applicable) name on each sheet. - H. A list of materials, with quantity estimates, and personnel, with qualifications, to be used to perform the mitigation work. - I. The seal and signature of an engineer who is licensed as a Civil Engineer by the State of California. For rejected piles to be repaired, the Contractor shall submit a pile mitigation plan that contains the following additional information: - A. An assessment of the nature and size of the anomalies in the rejected pile. - B. Provisions for access for additional pile testing if required by the Engineer. For rejected piles to be replaced or supplemented, the Contractor shall submit a pile mitigation plan that contains the following additional information: - A. The proposed location and size of additional piling. - B. Structural details and calculations for any modification to the structure to accommodate the replacement or supplemental piling. All provisions for cast-in-drilled-hole concrete piling shall apply to replacement piling. The Contractor shall allow the Engineer 3 weeks to review the mitigation plan after a complete submittal has been received. Should the Engineer fail to review the complete pile mitigation submittal within the time specified, and if, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of the delay in reviewing the pile mitigation plan, an extension of time commensurate with the delay in completion of the work thus caused will be granted in conformance with the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. When repairs are performed, the Contractor shall submit a mitigation report to the Engineer within 10 days of completion of the repair. This report shall state exactly what repair work was performed and quantify the success of the repairs relative to the
submitted mitigation plan. The mitigation report shall be stamped and signed by an engineer that is licensed as a Civil Engineer by the State of California. The mitigation report shall show the State assigned contract number, bridge number, full name of the structure as shown on the contract plans, District-County-Route-Kilometer Post, and the Contractor (and Subcontractor if applicable) name on each sheet. The Engineer will be the sole judge as to whether a mitigation proposal is acceptable, the mitigation efforts are successful, and to whether additional repairs, removal and replacement, or construction of a supplemental foundation is required. #### 10-1.31 STEEL STRUCTURES Construction of steel structures shall conform to the provisions in Section 55, "Steel Structures," of the Standard Specifications and these special provisions. Attention is directed to "Welding" in Section 8, "Materials," of these special provisions. The following substitutions of high-strength steel fasteners shall be made: | METRIC SIZE SHOWN ON THE PLANS | SIZE TO BE SUBSTITUTED | |--|---| | ASTM Designation: A 325M
(Nominal bolt diameter (mm or mm x
thread pitch)) | ASTM Designation: A 325
(Nominal bolt diameter (inch)) | | 13 or 12.70, M12, M12 x 1.75 | 1/2 | | 16 or 15.88, M16, M16 x 2 | 5/8 | | 19 or 19.05, M20, M20 x 2.5 | 3/4 | | 22 or 22.22, M22, M22 x 2.5 | 7/8 | | 24, 25, or 25.40, M24, M24 x 3 | 1 | | 29 or 28.58, M27, M24 x 3 | 1 1/8 | | 32 or 31.75, M30, M30 x 3.5 | 1 1/4 | | 38 or 38.10, M36, M36 x 4 | 1 1/2 | #### ROTATIONAL CAPACITY TESTING PRIOR TO SHIPMENT TO JOB SITE Rotational capacity tests shall be performed on all lots of high-strength fastener assemblies prior to shipment of these lots to the project site. Zinc-coated assemblies shall be tested after all fabrication, coating, and lubrication of components has been completed. One hardened washer shall be used under each nut for the tests. Each combination of bolt production lot, nut lot, and washer lot shall be tested as an assembly. A rotational capacity lot number shall be assigned to each combination of lots tested. Each shipping unit of fastener assemblies shall be plainly marked with the rotational capacity lot number. Two fastener assemblies from each rotational capacity lot shall be tested. The following equipment, procedure, and acceptance criteria shall be used to perform rotational capacity tests on and determine acceptance of long bolts. Fasteners are considered to be long bolts when full nut thread engagement can be achieved when installed in a bolt tension measuring device: #### A. Long Bolt Test Equipment: - 1. Calibrated bolt tension measuring device with adequate tension capacity for the bolts being tested. - 2. Calibrated dial or digital torque wrench. Other suitable tools will be required for performing Steps 7 and 8 of the Long Bolt Test Procedure. A torque multiplier may be required for large diameter bolts. - 3. Spacer washers or bushings. When spacer washers or bushings are required, they shall have the same inside diameter and equal or larger outside diameter as the appropriate hardened washers conforming to the requirements in ASTM Designation: F436. - 4. Steel beam or member, such as a girder flange or cross frame, to which the bolt tension measuring device will be attached. The device shall be accessible from the ground. #### B Long Bolt Test Procedure: - 1. Measure the bolt length. The bolt length is defined as the distance from the end of the threaded portion of the shank to the underside of the bolt head. - 2. Install the nut on the bolt so that 3 to 5 full threads of the bolt are located between the bearing face of the nut and the underside of the bolt head. Measure and record the thread stickout of the bolt. Thread stickout is determined by measuring the distance from the outer face of the nut to the end of the threaded portion of the shank. - 3. Insert the bolt into the bolt tension measuring device and install the required number of washers, and additional spacers as needed, directly beneath the nut to produce the thread stickout measured in Step 2 of this procedure. - 4. Tighten the nut using a hand wrench to a snug-tight condition. The snug tension shall not be less than the Table A value but may exceed the Table A value by a maximum of 2 kips. Table A | 14010 11 | | | |---|--------------|--| | High-Strength Fastener Assembly Tension | | | | Values to Approximate Snug-Tight | | | | Со | ndition | | | Bolt Diameter | Snug Tension | | | (inches) | (kips) | | | 1/2 | 1 | | | 5/8 | 2 | | | 3/4 | 3 | | | 7/8 | 4 | | | 1 | 5 | | | 1 1/8 | 6 | | | 1 1/4 | 7 | | | 1 3/8 | 9 | | | 1 1/2 | 10 | | 5. Match-mark the assembly by placing a heavy reference start line on the face plate of the bolt tension measuring device which aligns with 1) a mark placed on one corner of the nut, and 2) a radial line placed across the flat on the end of the bolt, or on the exposed portions of the threads of tension control bolts. Place an additional mark on the outside of the socket that overlays the mark on the nut corner such that this mark will be visible while turning the nut. Make an additional mark on the face plate, either 2/3 of a turn, one turn, or 1 1/3 turn clockwise from the heavy reference start line, depending on the bolt length being tested as shown in Table B. Table B | Required Nut Rotation for Rotational | | | |---------------------------------------|-----------------|--| | (a,b)
Capacity Tests | | | | Bolt Length | Required | | | (measured in | Rotation (turn) | | | Step 1) | | | | 4 bolt diameters | 2/3 | | | or less | | | | Greater than | 1 | | | 4 bolt diameters | | | | but no more than | | | | 8 bolt diameters | | | | Greater than | 1 1/3 | | | 8 bolt diameters, | | | | but no more than | | | | 12 bolt | | | | diameters (c) | | | | (a) Nut rotation is relative to bolt, | | | - (a) Nut rotation is relative to bolt, regardless of the element (nut or bolt) being turned. For bolts installed by 1/2 turn and less, the tolerance shall be plus or minus 30 degrees; for bolts installed by 2/3 turn and more, the tolerance shall be plus or minus 45 degrees. - (b) Applicable only to connections in which all material within grip of the bolt is steel. - (c) When bolt length exceeds 12 diameters, the required rotation shall be determined by actual tests in a suitable tension device simulating the actual conditions. - 6. Turn the nut to achieve the applicable minimum bolt tension value listed in Table C. After reaching this tension, record the moving torque, in foot-pounds, required to turn the nut, and also record the corresponding bolt tension value in pounds. Torque shall be measured with the nut in motion. Calculate the value, T (in ft-lbs), where T=[(the measured tension in pounds) x (the bolt diameter in inches) / 48 in/ft]. Table C | Minimum Tension Values for High-Strength | | | |--|---------|--| | Fastener Assemblies | | | | Bolt Diameter | Minimum | | | (inches) | Tension | | | | (kips) | | | 1/2 | 12 | | | 5/8 | 19 | | | 3/4 | 28 | | | 7/8 | 39 | | | 1 | 51 | | | 1 1/8 | 56 | | | 1 1/4 | 71 | | | 1 3/8 | 85 | | | 1 1/2 | 103 | | - 7. Turn the nut further to increase bolt tension until the rotation listed in Table B is reached. The rotation is measured from the heavy reference line made on the face plate after the bolt was snug-tight. Record this bolt tension. - 8. Loosen and remove the nut and examine the threads on both the nut and bolt. #### C. Long Bolt Acceptance Criteria: 1. An assembly shall pass the following requirements to be acceptable: 1) the measured moving torque (Step 6) shall be less than or equal to the calculated value, T (Step 6), 2) the bolt tension measured in Step 7 shall be greater than or equal to the applicable turn test tension value listed in Table D, 3) the nut shall be able to be removed from the bolt without signs of thread stripping or galling after the required rotation in Step 7 has been achieved, 4) the bolt does not shear from torsion or fail during the test, and 5) the assembly does not seize before the final rotation in Step 7 is reached. Elongation of the bolt in the threaded region between the bearing face of the nut and the underside of the bolt head is expected and will not be considered a failure. Both fastener assemblies tested from one rotational capacity lot shall pass for the rotational capacity lot to be acceptable. Table D | Town Toot Tourion Volume | | | |--------------------------|-----------|--| | Turn Test Tension Values | | | | Bolt Diameter | Turn Test | | | (inches) | Tension | | | | (kips) | | | 1/2 | 14 | | | 5/8 | 22 | | | 3/4 | 32 | | | 7/8 | 45 | | | 1 | 59 | | | 1 1/8 | 64 | | | 1 1/4 | 82 | | | 1 3/8 | 98 | | | 1 1/2 | 118 | | The following equipment, procedure, and acceptance criteria shall be used to perform rotational capacity tests on and determine acceptance of short bolts. Fasteners are considered to be short bolts when full nut thread engagement cannot be achieved when installed in a bolt tension measuring device: #### A. Short Bolt Test Equipment: - 1. Calibrated dial or digital torque wrench. Other suitable tools will be required for performing Steps 7 and 8 of the Short Bolt Test Procedure. A torque multiplier may be required for large diameter bolts. - 2. Spud wrench or equivalent. - 3. Spacer washers or bushings. When spacer washers or bushings are required, they shall have the same inside diameter and equal or larger outside diameter as the appropriate hardened washers conforming to the requirements in ASTM Designation: F436. - 4. Steel plate or girder with a hole to install bolt. The hole size shall be 1.6 mm greater than the nominal diameter of the bolt to be tested. The grip length, including any plates, washers, and additional spacers as
needed, shall provide the proper number of threads within the grip, as required in Step 2 of the Short Bolt Test Procedure. #### B. Short Bolt Test Procedure: - 1. Measure the bolt length. The bolt length is defined as the distance from the end of the threaded portion of the shank to the underside of the bolt head. - 2. Install the nut on the bolt so that 3 to 5 full threads of the bolt are located between the bearing face of the nut and the underside of the bolt head. Measure and record the thread stickout of the bolt. Thread stickout is determined by measuring the distance from the outer face of the nut to the end of the threaded portion of the shank. - 3. Install the bolt into a hole on the plate or girder and install the required number of washers and additional spacers as needed between the bearing face of the nut and the underside of the bolt head to produce the thread stickout measured in Step 2 of this procedure. - Tighten the nut using a hand wrench to a snug-tight condition. The snug condition shall be the full manual effort applied to the end of a 305 mm long wrench. This applied torque shall not exceed 20 percent of the maximum allowable torque in Table E. Table E | Manimum Allamahla Tanana fan | | | |-----------------------------------|----------|--| | Maximum Allowable Torque for | | | | High-Strength Fastener Assemblies | | | | Bolt Diameter | Torque | | | (inches) | (ft-lbs) | | | 1/2 | 145 | | | 5/8 | 285 | | | 3/4 | 500 | | | 7/8 | 820 | | | 1 | 1220 | | | 1 1/8 | 1500 | | | 1 1/4 | 2130 | | | 1 3/8 | 2800 | | | 1 1/2 | 3700 | | - 5. Match-mark the assembly by placing a heavy reference start line on the steel plate or girder which aligns with 1) a mark placed on one corner of the nut and 2) a radial line placed across the flat on the end of the bolt or on the exposed portions of the threads of tension control bolts. Place an additional mark on the outside of the socket that overlays the mark on the nut corner such that this mark will be visible while turning the nut. Make 2 additional small marks on the steel plate or girder, one 1/3 of a turn and one 2/3 of a turn clockwise from the heavy reference start line on the steel plate or girder. - Using the torque wrench, tighten the nut to the rotation value listed in Table F. The rotation is measured from the heavy reference line described in Step 5 made after the bolt was snug-tight. A second wrench shall be used to prevent rotation of the bolt head during tightening. Measure and record the moving torque after this rotation has been reached. The torque shall be measured with the nut in motion. | Table F | | | |--|-----------------------------|--| | Nut Rotation Required for Turn-of-Nut
(a,b)
Installation | | | | Bolt Length
(measured in
Step 1) | Required
Rotation (turn) | | | 4 bolt diameters 1/3 or less | | | | (a) Nut rotation is relative to bolt, regardless of the element (nut or bolt) being turned. For bolts installed by 1/2 turn and less, the tolerance shall be plus or minus 30 degrees. (b) Applicable only to connections in which all material within grip of the bolt is steel. | | | | (a) Nut rotation is relative to bolt, regardless of the element (nut or bolt) being turned. For bolts installed by 1/2 turn and less, the tolerance shall be plus or minus 30 degrees. (b) Applicable only to connections in which all material within grip of the bolt is steel. | | | 7. Tighten the nut further to the 2/3-turn mark as indicated in Table G. The rotation is measured from the heavy reference start line made on the plate or girder when the bolt was snug-tight. Verify that the radial line on the bolt end or on the exposed portions of the threads of tension control bolts is still in alignment with the start line. | Table G | | | |--------------------------------------|-----------------|--| | Required Nut Rotation for Rotational | | | | Capacity Test | | | | Bolt Length | Required | | | (measured in | Rotation (turn) | | | Step 1) | | | | 4 bolt diameters | 2/3 | | | or less | | | - 8. Loosen and remove the nut and examine the threads on both the nut and bolt. - C. Short Bolt Acceptance Criteria: - 1. An assembly shall pass the following requirements to be acceptable: 1) the measured moving torque from Step 6 shall be less than or equal to the maximum allowable torque from Table E, 2) the nut shall be able to be removed from the bolt without signs of thread stripping or galling after the required rotation in Step 7 has been achieved, 3) the bolt does not shear from torsion or fail during the test, and 4) the assembly shall not seize before the final rotation in Step 7 is reached. Elongation of the bolt in the threaded region between the bearing face of the nut and the underside of the bolt head will not be considered a failure. Both fastener assemblies tested from one rotational capacity lot shall pass for the rotational capacity lot to be acceptable. ## INSTALLATION TENSION TESTING AND ROTATIONAL CAPACITY TESTING AFTER ARRIVAL ON THE JOB SITE Installation tension tests and rotational capacity tests on high-strength fastener assemblies shall be performed by the Contractor prior to acceptance or installation and after arrival of the fastener assemblies on the project site. Installation tension tests and rotational capacity tests shall be performed at the job-site, in the presence of the Engineer, on each rotational capacity lot of fastener assemblies. Installation tension tests shall be performed on 3 representative fastener assemblies in conformance with the provisions in Section 8, "Installation," of the RCSC Specification. For short bolts, Section 8.2, "Pretensioned Joints," of the RCSC Specification shall be replaced by the "Pre-Installation Testing Procedures," of the "Structural Bolting Handbook," published by the Steel Structures Technology Center, Incorporated. The rotational capacity tests shall be performed in conformance with the requirements for rotational capacity tests in "Rotational Capacity Testing Prior to Shipment to Job Site" of these special provisions. At the Contractor's expense, additional installation tension tests, tests required to determine job inspecting torque, and rotational capacity tests shall be performed by the Contractor on each rotational capacity lot, in the presence of the Engineer, if 1) any fastener is not used within 3 months after arrival on the jobsite, 2) fasteners are improperly handled, stored, or subjected to inclement weather prior to final tightening, 3) significant changes are noted in original surface condition of threads, washers, or nut lubricant, or 4) the Contractor's required inspection is not performed within 48 hours after all fasteners in a joint have been tensioned. Failure of a job-site installation tension test or a rotational capacity test will be cause for rejection of unused fasteners that are part of the rotational capacity lot. When direct tension indicators are used, installation verification tests shall be performed in conformance with Appendix Section X1.4 of ASTM Designation: F959, except that bolts shall be initially tensioned to a value 5 percent greater than the minimum required bolt tension. Dimensional details and workmanship for welded joints in tubular and pipe connections shall conform to the provisions in Part A, "Common Requirements of Nontubular and Tubular Connections," and Part D, "Specific Requirements for Tubular Connections," in Section 2 of AWS D1.1. #### MEASUREMENT AND PAYMENT Full compensation for the structural steel for the lighting shall be considered as included in the contract lump sum price for lighting and no additional compensation shall be allowed therefor. #### SECTION 10-3. SIGNALS, LIGHTING AND ELECTRICAL SYSTEMS #### 10-3.01 DESCRIPTION Lighting shall conform to the provisions in Section 86, "Signals, Lighting and Electrical Systems," of the Standard Specifications and these special provisions. #### 10-3.02 FOUNDATIONS Reinforced cast-in-drilled-hole concrete pile foundations for lighting standards shall conform to the provisions in "Piling" of these special provisions. #### 10-3.03 STANDARDS, STEEL PEDESTALS AND POSTS Standards, steel pedestals and posts for lighting standards shall conform to the provisions in "Steel Structures" of these special provisions. All ferrous metal parts of tubular sign structures shall be galvanized and shall not be painted. #### 10-3.04 CONDUIT Conduit to be installed underground shall be Type 3 unless otherwise specified. Conduit sizes shown on the plans and specified in the Standard Specifications and these special provisions are referenced to metallic type conduit. When rigid non-metallic conduit is required or allowed, the nominal equivalent industry size shall be used as shown in the following table: | Size Designation for Metallic Type Conduit | Equivalent Size for Rigid Non-metallic
Conduit | |--|---| | 21 | 20 | | 27 | 25 | | 41 | 40 | | 53 | 50 | | 63 | 65 | | 78 | 75 | | 103 | 100 | After conductors have been installed, the ends of conduits terminating in pull boxes shall be sealed with an approved type of sealing compound. #### **10-3.05 PULL BOXES** Grout shall not be placed in the bottom of pull boxes. #### 10-3.06 CONDUCTORS AND WIRING Splices shall be insulated by "Method B. The minimum insulation thickness, at any point, for Type USE, RHH or RHW wire shall be 1.0 mm for conductor sizes No. 14 to No. 10, inclusive, and 1.3 mm for No. 8 to No. 2, inclusive. The minimum insulation thickness, at any point, for Type THW and TW wires shall be 0.69 mm for
conductor sizes No. 14 to No. 10, inclusive, 1.02 mm for No. 8, and 1.37 mm for No. 6 to No. 2, inclusive. #### 10-3.07 NUMBERING ELECTRICAL EQUIPMENT Self-adhesive reflective numbers and edge sealer shall be furnished by the Contractor in conformance with the provisions in "Materials" of these special provisions. The numbers and edge sealer shall be placed on the equipment where designated by the Engineer. Where new numbers are to be placed on existing or relocated equipment, the existing numbers shall be removed. Reflective numbers shall be applied to a clean surface. Only the edges of the numbers shall be treated with edge sealer. Five-digit, self-adhesive equipment numbers shall be placed for all electroliers. On electroliers, the numbers shall be placed as directed by the Engineer. #### 10-3.08 LUMINAIRES Ballasts shall be the lag regulator type. #### 10-3.09 REMOVING, REINSTALLING OR SALVAGING ELECTRICAL EQUIPMENT Salvaged electrical materials shall be hauled to Batavia Maintenance Station, 1808 Batavia, Orange, California and stockpiled. The Contractor shall provide the equipment, as necessary, to safely unload and stockpile the material. A minimum of 2 working days' notice shall be given prior to delivery by calling (714) 974-3092. ### **10-3.10 PAYMENT** Full compensation for hauling and stockpiling electrical materials shall be considered as included in the contract price paid for the item requiring the material to be salvaged and no additional compensation will be allowed therefor. # ENGINEER'S ESTIMATE 12-0C9414 | Item | Item Code | Item | Unit of
Measure | Estimated Quantity | Unit Price | Item Total | |-------------|-----------|--|--------------------|--------------------|------------|------------| | 41 | 703369 | 900 MM BITUMINOUS COATED
CORRUGATED STEEL PIPE RISER
(2.01 MM THICK) | EA | 1 | | | | 42 | 705336 | 450 MM ALTERNATIVE FLARED
END SECTION | EA | 2 | | | | 43 | 705337 | 600 MM ALTERNATIVE FLARED
END SECTION | EA | 2 | | | | 44 | 705339 | 900 MM ALTERNATIVE FLARED
END SECTION | EA | 2 | | | | 45 | 705341 | 1200 MM ALTERNATIVE FLARED END SECTION | EA | 3 | | | | 46 | 707247 | 1200 MM PRECAST CONCRETE PIPE
MANHOLE | EA | 21 | | | | 47 | 707249 | 1500 MM PRECAST CONCRETE PIPE
MANHOLE | EA | 15 | | | | 48 | 024205 | 1800 MM PRECAST CONCRETE PIPE
MANHOLE (MODIFIED) | EA | 10 | | | | 49 | 024206 | MODIFIED CONCRETED-ROCK
SLOPE PROTECTION
(1/4T, METHOD A) | M3 | 42 | | | | 50
(S-F) | 750001 | MISCELLANEOUS IRON AND STEEL | KG | 10 880 | | | | 51
(S) | 800391 | CHAIN LINK FENCE (TYPE CL-1.8) | M | 210 | | | | 52
(S) | 802585 | 1.2 M CHAIN LINK GATE
(TYPE CL-1.8) | EA | 10 | | | | 53 | (BLANK) | | | | | | | 54 | 860400 | LIGHTING (TEMPORARY) | LS | LUMP SUM | LUMP SUM | | | 55 | 860401 | LIGHTING | LS | LUMP SUM | LUMP SUM | | | 56 | 999990 | MOBILIZATION | LS | LUMP SUM | LUMP SUM | | | ΓΟΤΑΙ | BID: | | |-------|------|--| |-------|------|--|